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housekeeping (/ˈhaʊskiːpɪŋ/)

noun

1. the management of household affairs.
2. operations such as maintenance or record-keeping which facilitate productive work in an organization.



  

The Monastery

● Located approx. 40km outside of Athens,
near the seaside town of Oropos

● “Paraklitos” means “Paraclete”, i.e. the 3rd

divine person (hypostasis) of the Holy Trinity

● Founded in 1963 and officially recognised
from Church and State in 1978, today is
home to 25 monks

● Follows the organisation of Mount Athos
monasteries

The main courtyard of the Monastery with the main Church



  

The Library

● Contains approximately 30,000 books,
a large portion of which come from donations

● Currently accommodated in two floors, but more
space is planned to become available

● The main collection expands at a rate of ~500
books per year

● Focuses mostly on religion, but other
disciplines in the humanities are represented
as well, such as history, philosophy, psychology

Interior of the Library – the main collection



  

The need for change

● The previous library catalog software
was a DOS-based program called ΑΒΕΚΤ
running on a Windows 95 PC

● Originally installed in 2000, it served basic 
cataloguing needs for more than 10 years

● Offered no support for multiple user 
editing or OPAC

● No spine/barcode label creation and
printing available



  

The migration

● Koha was chosen among other ILSs in 2011

● Over 20,000 records exported from ΑΒΕΚΤ 4.4 in ISO
2709 (UNIMARC) format and imported into Koha

● Originally a tarball installation (ver. 3.02) on an
Ubuntu 10.04 LTS VM running on VirtualBox

● Since Aug. 2016 a package install (v. 16.05) on a
Debian 8.9 VM running on an ESXi 5.0 host



  

A  difficult inheritance

● No item or patron information, just plain biblio records

● ΑΒΕΚΤ (previous ILS) was MARC-aware, but several fields were not 
correctly filled out according to the standards

● A number of challenges arose, some of which were purely bibliographic,
while others purely technical

● Hence the need for re-cataloguing and developing housekeeping scripts



  

Bibliographic challenge #1: missing indicator 0

● How do you detect that 
UNIMARC field 610 
(“Uncontrolled Subject Terms”) 
has a missing 1st indicator?



  

Bibliographic and item data storage in Koha

● A Koha instance stores its bibliographic and 
item data in the associated database tables

● MARCXML is used internally

● Prior to version 17.05, biblio data was placed
in the biblioitems.marcxml column, in
more recent versions this was changed to
biblio_metadata.metadata

<datafield tag="610" ind1="0" ind2=" ">
  <subfield code="a">Monks</subfield>
</datafield>
<datafield tag="610" ind1=" " ind2=" ">
  <subfield code="a">Christian saints</subfield>
</datafield>
<datafield tag="610" ind1=" " ind2=" ">
  <subfield code="a">Miracles</subfield>
</datafield>



  

Working with (MARC)XML data

● There are many ways to process XML data, depending on the programming language

● Two common C parsers are expat and libxml2

● C++ has xerces-c++ and tinyxml2

● If speed is your #1 priority, there’s even one coded in Assembly: AsmXml

● Perl has XML::LibXML and MARC::XML

● PHP has SimpleXML (built-in), or one can use the (external) File_MARC package
from PEAR (PHP Extension and Application Repository)



  

A common block of code

This block of code:

● sets the SQL connection parameters 
and establishes a connection to the 
Koha database

● sets the connection character set

● runs a simple SELECT query that 
fetches the biblio number and 
associated MARCXML data for all 
books in the DB (or for a specific biblio)

● performs some basic error checking



  

Loading MARCXML data with SimpleXML

<datafield tag="610" ind1="0" ind2=" ">
  <subfield code="a">Monks</subfield>
</datafield>
<datafield tag="610" ind1=" " ind2=" ">
  <subfield code="a">Christian saints</subfield>
</datafield>
<datafield tag="610" ind1=" " ind2=" ">
  <subfield code="a">Miracles</subfield>
</datafield>



  

Displaying the results in the web browser

● The results are sorted by biblio number, then 
by subject term

● The first hyperlink allows you to see all subject 
terms for a particular biblio number

● The second hyperlink directly takes you to the 
Staff interface view for that biblio for direct 
editing

● The third field is the actual subject term that is 
missing a 0 for the 1st indicator



  

The ‘File_MARC’ PHP package
● File_MARC is a PHP package that allows you to manipulate MARC/MARCXML records

● Currently at version 1.3.0, with extensive documentation at https://pear.php.net

● Methods for retrieving information: getLeader(), getField(), getFields(), 
getTag(), getCode(), getData(), getPosition(), getIndicator(),
getContents(), getSubfield(), getSubfields()

● Methods for working with fields and subfields: appendField(), prependField(), 
insertField(), deleteFields(), appendSubfield(), prependSubfield(), 
insertSubfield(), deleteSubfield()

● Methods for manipulating leader/field/subfield data: setLeader(), setTag(),
setCode(), setData(), setPosition(), setIndicator()



  

Bibliographic challenge #2: 7xx missing role code

● Here the creator’s role code (author, translator, photographer, etc.) 
is missing (marked with the red rectangle)



  

Loading MARCXML data with File_MARC



  

Displaying the results in the web browser

● The hyperlink points to the Staff interface 
view for the particular biblio number



  

Technical challenge #1: ISBN validator

● In UNIMARC flavour, the ISBN is stored in field 010$a

● A small typo when entering the ISBN can make it invalid

● Thankfully, a PHP package (Validate_ISPN) exists, 
that can check ISBNs for correctness

● Coupled with a lookup on http://www.isbn-check.de, the 
user can easily spot trivial mistakes



  

Code: detecting invalid ISBNs



  

Displaying the results in the web browser

● The first hyperlink points to the Staff interface 
view for the particular biblio number

● The second link points to the www.isbn-check.de 
website for suspected errors



  

www.isbn-check.de



  

Technical challenge #2: unused authority records



  

Querying Zebra using the YAZ toolkit

● For this, we concluded that is faster to query Zebra to get information from our 
catalogue

● With a few small changes in /etc/koha/sites/<INSTANCE>/koha-conf.xml 
you can set up your own Z39.50 server listening on localhost

● yaz is another PHP package from PECL (PHP Extension Community Library), 
implementing a Z39.50 client

● The query we will be issuing is:
@attrset Bib-1 @attr 1=Koha-Auth-Number $AUTHORITY_ID



  

Code: querying Zebra



  

Displaying the results in the web browser

● The hyperlink points to the authority 
details view in the Staff interface



  

Bibliographic challenge #3: repeatable ‘a’ subfields

● Following the migration from the old 
cataloguing software, single keyword 
subjects were inherited as repeatable
610 ‘a’ subfields

● Their hyperlinks returned results for all 
keywords as a string (heading), instead of 
the desired results for each keyword

● Very time-consuming and error-prone to
fix by hand since it affected many biblios

● There was a need to globally correct the
offending records



  

Bibliographic challenge #3: repeatable ‘a’ subfields

<datafield tag="610" ind1="0" ind2=" ">
  <subfield code="a">Monks</subfield>
  <subfield code="a">Christian saints</subfield>
  <subfield code="a">Miracles</subfield>
</datafield>

<datafield tag="610" ind1="0" ind2=" ">
  <subfield code="a">Monks</subfield>
</datafield>
<datafield tag="610" ind1="0" ind2=" ">
  <subfield code="a">Christian saints</subfield>
</datafield>
<datafield tag="610" ind1="0" ind2=" ">
  <subfield code="a">Miracles</subfield>
</datafield>

● How do you get from A to B?

A

B



  

Code: fixing multiple 610$a subfields



  

The future

● Develop more scripts ;-) Current ideas include:
- Detection of English characters ABEHIKMNOPTXYZ in otherwise Greek words
- Auto-fill indicators 0 2 for CORPO_NAME type authorities

● Place repeated code (such as the MySQL connection parameters, the URLs pointing 
to Koha’s Staff interface, etc.) into a file (e.g. common.php) and have the scripts 
include it

● Include screenshots in GitHub’s README.md displaying the output of the scripts

● Attempt to re-write and package one of the smallest scripts as a Koha plugin



  

GitHub repository

● Most of the PHP scripts shown today are available at:

https://github.com/a-roussos/php-koha
● More will be added in due course
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