

Catalog housekeeping scripts for Koha

Andreas Roussos
Systems Librarian @

Library of the Holy Monastery of Paraklitos
(Oropos, Greece)

housekeeping (/ˈhaʊskiːpɪŋ/)

noun

1. the management of household affairs.
2. operations such as maintenance or record-keeping which facilitate productive work in an organization.

The Monastery

● Located approx. 40km outside of Athens,
near the seaside town of Oropos

● “Paraklitos” means “Paraclete”, i.e. the 3rd

divine person (hypostasis) of the Holy Trinity

● Founded in 1963 and officially recognised
from Church and State in 1978, today is
home to 25 monks

● Follows the organisation of Mount Athos
monasteries

The main courtyard of the Monastery with the main Church

The Library

● Contains approximately 30,000 books,
a large portion of which come from donations

● Currently accommodated in two floors, but more
space is planned to become available

● The main collection expands at a rate of ~500
books per year

● Focuses mostly on religion, but other
disciplines in the humanities are represented
as well, such as history, philosophy, psychology

Interior of the Library – the main collection

The need for change

● The previous library catalog software
was a DOS-based program called ΑΒΕΚΤ
running on a Windows 95 PC

● Originally installed in 2000, it served basic
cataloguing needs for more than 10 years

● Offered no support for multiple user
editing or OPAC

● No spine/barcode label creation and
printing available

The migration

● Koha was chosen among other ILSs in 2011

● Over 20,000 records exported from ΑΒΕΚΤ 4.4 in ISO
2709 (UNIMARC) format and imported into Koha

● Originally a tarball installation (ver. 3.02) on an
Ubuntu 10.04 LTS VM running on VirtualBox

● Since Aug. 2016 a package install (v. 16.05) on a
Debian 8.9 VM running on an ESXi 5.0 host

A difficult inheritance

● No item or patron information, just plain biblio records

● ΑΒΕΚΤ (previous ILS) was MARC-aware, but several fields were not
correctly filled out according to the standards

● A number of challenges arose, some of which were purely bibliographic,
while others purely technical

● Hence the need for re-cataloguing and developing housekeeping scripts

Bibliographic challenge #1: missing indicator 0

● How do you detect that
UNIMARC field 610
(“Uncontrolled Subject Terms”)
has a missing 1st indicator?

Bibliographic and item data storage in Koha

● A Koha instance stores its bibliographic and
item data in the associated database tables

● MARCXML is used internally

● Prior to version 17.05, biblio data was placed
in the biblioitems.marcxml column, in
more recent versions this was changed to
biblio_metadata.metadata

<datafield tag="610" ind1="0" ind2=" ">
 <subfield code="a">Monks</subfield>
</datafield>
<datafield tag="610" ind1=" " ind2=" ">
 <subfield code="a">Christian saints</subfield>
</datafield>
<datafield tag="610" ind1=" " ind2=" ">
 <subfield code="a">Miracles</subfield>
</datafield>

Working with (MARC)XML data

● There are many ways to process XML data, depending on the programming language

● Two common C parsers are expat and libxml2

● C++ has xerces-c++ and tinyxml2

● If speed is your #1 priority, there’s even one coded in Assembly: AsmXml

● Perl has XML::LibXML and MARC::XML

● PHP has SimpleXML (built-in), or one can use the (external) File_MARC package
from PEAR (PHP Extension and Application Repository)

A common block of code

This block of code:

● sets the SQL connection parameters
and establishes a connection to the
Koha database

● sets the connection character set

● runs a simple SELECT query that
fetches the biblio number and
associated MARCXML data for all
books in the DB (or for a specific biblio)

● performs some basic error checking

Loading MARCXML data with SimpleXML

<datafield tag="610" ind1="0" ind2=" ">
 <subfield code="a">Monks</subfield>
</datafield>
<datafield tag="610" ind1=" " ind2=" ">
 <subfield code="a">Christian saints</subfield>
</datafield>
<datafield tag="610" ind1=" " ind2=" ">
 <subfield code="a">Miracles</subfield>
</datafield>

Displaying the results in the web browser

● The results are sorted by biblio number, then
by subject term

● The first hyperlink allows you to see all subject
terms for a particular biblio number

● The second hyperlink directly takes you to the
Staff interface view for that biblio for direct
editing

● The third field is the actual subject term that is
missing a 0 for the 1st indicator

The ‘File_MARC’ PHP package
● File_MARC is a PHP package that allows you to manipulate MARC/MARCXML records

● Currently at version 1.3.0, with extensive documentation at https://pear.php.net

● Methods for retrieving information: getLeader(), getField(), getFields(),
getTag(), getCode(), getData(), getPosition(), getIndicator(),
getContents(), getSubfield(), getSubfields()

● Methods for working with fields and subfields: appendField(), prependField(),
insertField(), deleteFields(), appendSubfield(), prependSubfield(),
insertSubfield(), deleteSubfield()

● Methods for manipulating leader/field/subfield data: setLeader(), setTag(),
setCode(), setData(), setPosition(), setIndicator()

Bibliographic challenge #2: 7xx missing role code

● Here the creator’s role code (author, translator, photographer, etc.)
is missing (marked with the red rectangle)

Loading MARCXML data with File_MARC

Displaying the results in the web browser

● The hyperlink points to the Staff interface
view for the particular biblio number

Technical challenge #1: ISBN validator

● In UNIMARC flavour, the ISBN is stored in field 010$a

● A small typo when entering the ISBN can make it invalid

● Thankfully, a PHP package (Validate_ISPN) exists,
that can check ISBNs for correctness

● Coupled with a lookup on http://www.isbn-check.de, the
user can easily spot trivial mistakes

Code: detecting invalid ISBNs

Displaying the results in the web browser

● The first hyperlink points to the Staff interface
view for the particular biblio number

● The second link points to the www.isbn-check.de
website for suspected errors

www.isbn-check.de

Technical challenge #2: unused authority records

Querying Zebra using the YAZ toolkit

● For this, we concluded that is faster to query Zebra to get information from our
catalogue

● With a few small changes in /etc/koha/sites/<INSTANCE>/koha-conf.xml
you can set up your own Z39.50 server listening on localhost

● yaz is another PHP package from PECL (PHP Extension Community Library),
implementing a Z39.50 client

● The query we will be issuing is:
@attrset Bib-1 @attr 1=Koha-Auth-Number $AUTHORITY_ID

Code: querying Zebra

Displaying the results in the web browser

● The hyperlink points to the authority
details view in the Staff interface

Bibliographic challenge #3: repeatable ‘a’ subfields

● Following the migration from the old
cataloguing software, single keyword
subjects were inherited as repeatable
610 ‘a’ subfields

● Their hyperlinks returned results for all
keywords as a string (heading), instead of
the desired results for each keyword

● Very time-consuming and error-prone to
fix by hand since it affected many biblios

● There was a need to globally correct the
offending records

Bibliographic challenge #3: repeatable ‘a’ subfields

<datafield tag="610" ind1="0" ind2=" ">
 <subfield code="a">Monks</subfield>
 <subfield code="a">Christian saints</subfield>
 <subfield code="a">Miracles</subfield>
</datafield>

<datafield tag="610" ind1="0" ind2=" ">
 <subfield code="a">Monks</subfield>
</datafield>
<datafield tag="610" ind1="0" ind2=" ">
 <subfield code="a">Christian saints</subfield>
</datafield>
<datafield tag="610" ind1="0" ind2=" ">
 <subfield code="a">Miracles</subfield>
</datafield>

● How do you get from A to B?

A

B

Code: fixing multiple 610$a subfields

The future

● Develop more scripts ;-) Current ideas include:
- Detection of English characters ABEHIKMNOPTXYZ in otherwise Greek words
- Auto-fill indicators 0 2 for CORPO_NAME type authorities

● Place repeated code (such as the MySQL connection parameters, the URLs pointing
to Koha’s Staff interface, etc.) into a file (e.g. common.php) and have the scripts
include it

● Include screenshots in GitHub’s README.md displaying the output of the scripts

● Attempt to re-write and package one of the smallest scripts as a Koha plugin

GitHub repository

● Most of the PHP scripts shown today are available at:

https://github.com/a-roussos/php-koha
● More will be added in due course

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

